
A Tutorial Introduction to the Lambda Calculus

Raúl Rojas∗

FU Berlin, WS-97/98

Abstract

This paper is a short and painless introduction to the λ calculus. Originally
developed in order to study some mathematical properties of effectively com-
putable functions, this formalism has provided a strong theoretical foundation
for the family of functional programming languages. We show how to perform
some arithmetical computations using the λ calculus and how to define recur-
sive functions, even though functions in λ calculus are not given names and thus
cannot refer explicitly to themselves.

1 Definition

The λ calculus can be called the smallest universal programming language of the
world. The λ calculus consists of a single transformation rule (variable substitution)
and a single function definition scheme. It was introduced in the 1930s by Alonzo
Church as a way of formalizing the concept of effective computability. The λ calculus
is universal in the sense that any computable function can be expressed and evaluated
using this formalism. It is thus equivalent to Turing machines. However, the λ calculus
emphasizes the use of transformation rules and does not care about the actual machine
implementing them. It is an approach more related to software than to hardware.

The central concept in λ calculus is the “expression”. A “name”, also called a
“variable”, is an identifier which, for our purposes, can be any of the letters a, b, c, . . .
An expression is defined recursively as follows:

<expression> := <name> | <function> | <application>
<function> := λ <name>.<expression>

<application> := <expression><expression>

An expression can be surrounded with parenthesis for clarity, that is, if E is an
expression, (E) is the same expression. The only keywords used in the language are λ
and the dot. In order to avoid cluttering expressions with parenthesis, we adopt the
convention that function application associates from the left, that is, the expression

E1E2E3 . . . En

∗Send corrections or suggestions to rojas@inf.fu-berlin.de

1

is evaluated applying the expressions as follows:

(. . . ((E1E2)E3) . . . En)

As can be seen from the definition of λ expressions given above, a single identifier
is a λ expression. An example of a function is the following:

λx.x

This expression defines the identity function. The name after the λ is the identifier
of the argument of this function. The expression after the point (in this case a single
x) is called the “body” of the definition.

Functions can be applied to expressions. An example of an application is

(λx.x)y

This is the identity function applied to y. Parenthesis are used for clarity in order to
avoid ambiguity. Function applications are evaluated by substituting the value of the
argument x (in this case y) in the body of the function definition, i.e.

(λx.x)y = [y/x]x = y

In this transformation the notation [y/x] is used to indicate that all occurrences of x
are substituted by y in the expression to the right.

The names of the arguments in function definitions do not carry any meaning by
themselves. They are just “place holders”, that is, they are used to indicate how to
rearrange the arguments of the function when it is evaluated. Therefore

(λz.z) ≡ (λy.y) ≡ (λt.t) ≡ (λu.u)

and so forth. We use the symbol “≡” to indicate that when A ≡ B, A is just a
synonym of B.

1.1 Free and bound variables

In λ calculus all names are local to definitions. In the function λx.x we say that x is
“bound” since its occurrence in the body of the definition is preceded by λx. A name
not preceded by a λ is called a “free variable”. In the expression

(λx.xy)

the variable x is bound and y is free. In the expression

(λx.x)(λy.yx)

the x in the body of the first expression from the left is bound to the first λ. The y
in the body of the second expression is bound to the second λ and the x is free. It
is very important to notice that the x in the second expression is totally independent
of the x in the first expression.

Formally we say that a variable <name> is free in an expression if one of the
following three cases holds:

2

• <name> is free in <name>.

• <name> is free in λ <name1 > . <exp> if the identifier <name> 6=<name1 >
and <name> is free in <exp>.

• <name> is free in E1E2 if <name> is free in E1 or if it is free in E2.

A variable <name> is bound if one of two cases holds:

• <name> is bound in λ <name1 > . <exp> if the identifier<name>=<name1 >
or if <name> is bound in <exp>.

• <name> is bound in E1E2 if <name> is bound in E1 or if it is bound in E2.

It should be emphasized that the same identifier can occur free and bound in the
same expression. In the expression

(λx.xy)(λy.y)

the first y is free in the parenthesized subexpression to the left. It is bound in the
subexpression to the right. It occurs therefore free as well as bound in the whole
expression.

1.2 Substitutions

The more confusing part of standard λ calculus, when first approaching it, is the fact
that we do not give names to functions. Any time we want to apply a function, we
write the whole function definition and then procede to evaluate it. To simplify the
notation, however, we will use capital letters, digits and other symbols as synonyms
for some function definitions. The identity function, for example, can be denoted with
I which is a synonym for (λx.x).

The identity function applied to itself is the application

II ≡ (λx.x)(λx.x)

In this expression the first x in the body of the first expression in parenthesis is
independent of the x in the body of the second expression. We can in fact rewrite the
above expression as

II ≡ (λx.x)(λz.z)

The identity function applied to itself

II ≡ (λx.x)(λz.z)

yields therefore
[λz.z/x]x = λz.z ≡ I

that is, the identity function again.
We should be careful when performing substitutions to avoid mixing up free oc-

currences of an identifier with bound ones. In the expression

(λx.(λy.xy))y
3

the function to the left contains a bound y, whereas the y at the right is free. An
incorrect substitution would mix the two identifiers in the erroneous result

(λy.yy)

Simply by renaming the bound y to t we obtain

(λx.(λt.xt))y = (λt.yt)

which is a completely different result but nevertheless the correct one.
Therefore, if the function λx. <exp> is applied to E, we substitute all free occur-

rences of x in <exp> with E. If the substitution would bring a free variable of E in
an expression where this variable occurs bound, we rename the bound variable before
performing the substitution. For example, in the expression

(λx.(λy.(x(λx.xy))))y

we associate the argument x with y. In the body

(λy.(x(λx.xy)))

only the first x is free and can be substituted. Before substituting though, we have
to rename the variable y to avoid mixing its bound with is free occurrence:

[y/x](λt.(x(λx.xt))) = (λt.(y(λx.xt)))

In normal order reduction we try to reduce always the left most expression of a
series of applications. We continue until no further reductions are possible.

2 Arithmetic

We expect from a programming language that it should be capable of doing arith-
metical calculations. Numbers can be represented in lambda calculus starting from
zero and writing “suc(zero)” to represent 1, “suc(suc(zero))” to represent 2, and so
on. In the lambda calculus we can only define new functions. Numbers will be defined
as functions using the following approach: zero can be defined as

λs.(λz.z)

This is a function of two arguments s and z. We will abbreviate such expressions
with more than one argument as

λsz.z

It is understood here that s is the first argument to be substituted during the evalu-
ation and z the second. Using this notation, the first natural numbers can be defined
as

1 ≡ λsz.s(z)
2 ≡ λsz.s(s(z))
3 ≡ λsz.s(s(s(z)))

and so on.
4

Our first interesting function is the successor function. This can be defined as

S ≡ λwyx.y(wyx)

The successor function applied to our representation for zero yields

S0 ≡ (λwyx.y(wyx))(λsz.z)

In the body of the first expression we substitute all occurrences of w with (λsz.z) and
this yields

λyx.y((λsz.z)yx) = λyx.y((λz.z)x) = λyx.y(x) ≡ 1

That is, we obtain the representation of the number 1 (remember that variable names
are “dummies”).

Successor applied to 1 yields:

S1 ≡ (λwyx.y(wyx))(λsz.s(z)) = λyx.y((λsz.s(z))yx) = λyx.y(y(x)) ≡ 2

Notice that the only purpose of applying the number (λsz.s(z)) to the arguments y
and x is to “rename” the variables used in the definition of our number.

2.1 Addition

Addition can be obtained immediately by noting that the body sz of our definition
of the number 1, for example, can be interpreted as the application of the function s
on z. If we want to add say 2 and 3, we just apply the successor function two times
to 3.

Let us try the following in order to compute 2+3:

2S3 ≡ (λsz.s(sz))(λwyx.y(wyx))(λuv.u(u(uv)))

The first expression on the right side is a 2, the second is the successor function, the
third is a 3 (we have renamed the variables for clarity). The expression above reduces
to

(λwyx.y((wy)x))((λwyx.y((wy)x))(λuv.u(u(uv)))) ≡ SS3

The reader can verify that SS3 reduces to S4 = 5.

2.2 Multiplication

The multiplication of two numbers x and y can be computed using the following
function:

(λxyz.x(yz))

The product of 2 by 2 is then:

(λxyz.x(yz))22

which reduces to
(λz.2(2z))

The reader can verify that by further reducing this expression, we can obtain the
expected result 4.

5

3 Conditionals

We introduce the following two functions which we call the values “true”

T ≡ λxy.x

and “false”
F ≡ λxy.y

The first function takes two arguments and returns the first one, the second function
returns the second of two arguments.

3.1 Logical operations

It is now possible to define logical operations using this representation of the truth
values.
The AND function of two arguments can be defined as

∧ ≡ λxy.xy(λuv.v) ≡ λxy.xyF

The OR function of two arguments can be defined as

∨ ≡ λxy.x(λuv.u)y ≡ λxy.xTy

Negation of one argument can be defined as

¬ ≡ λx.x(λuv.v)(λab.a) ≡ λx.xFT

The negation function applied to “true” is

¬T ≡ λx.x(λuv.v)(λab.a)(λcd.c)

which reduces to

TFT ≡ (λcd.c)(λuv.v)(λab.a) = (λuv.v) ≡ F

that is, the truth value “false”.

3.2 A conditional test

It is very convenient in a programming language to have a function which is true if
a number is zero and false otherwise. The following function Z complies with this
requirement

Z ≡ λx.xF¬F

To understand how this function works, note that

0fa ≡ (λsz.z)fa = a

that is, the function f applied zero times to the argument a yields a. On the other
hand, F applied to any argument yields the identity function

Fa ≡ (λxy.y)a = λy.y ≡ I
6

We can now test if the function Z works correctly. The function applied to zero yields

Z0 ≡ (λx.xF¬F)0 = 0F¬F = ¬F = T

because F applied 0 times to ¬ yields ¬. The function Z applied to any other number
N yields

ZN ≡ (λx.xF¬F)N = NF¬F

The function F is then applied N times to ¬. But F applied to anything is the identity,
so that the above expression reduces for any number N greater than zero to

IF = F

3.3 The predecessor function

We can now define the predecessor function combining some of the functions intro-
duced above. When looking for the predecessor of n, the general strategy will be to
create a pair (n, n− 1) and then pick the second element of the pair as the result.

A pair (a, b) can be represented in λ-calculus using the function

(λz.zab)

We can extract the first element of the pair from the expression applying this function
to T

(λz.zab)T = Tab = a

and the second applying the function to F

(λz.zab)F = Fab = b

The following function generates from the pair (n, n− 1) (which is the argument p in
the function) the pair (n+ 1, n− 1):

Φ ≡ (λpz.z(S(pT))(pT))

The subexpression pT extracts the first element from the pair p. A new pair is formed
using this element, which is incremented for the first position of the new pair and just
copied for the second position of the new pair.

The predecessor of a number n is obtained by applying n times the function Φ to
the pair (λ.z00) and then selecting the second member of the new pair:

P ≡ (λn.nΦ(λz.z00)F

Notice that using this approach the predecessor of zero is zero. This property is useful
for the definition of other functions.

3.4 Equality and inequalities

With the predecessor function as the building block, we can now define a function
which tests if a number x is greater than or equal to a number y:

G ≡ (λxy.Z(xPy))
7

If the predecessor function applied x times to y yields zero, then it is true that x ≥ y.
If x ≥ y and y ≥ x, then x = y. This leads to the following definition of the

function E which tests if two numbers are equal:

E ≡ (λxy. ∧ (Z(xPy))(Z(yPx)))

In a similar manner we can define functions to test whether x > y, x < y or x 6= y.

4 Recursion

Recursive functions can be defined in the λ calculus using a function which calls a
function y and then regenerates itself. This can be better understood by considering
the following function Y:

Y ≡ (λy.(λx.y(xx))(λx.y(xx)))

This function applied to a function R yields:

YR = (λx.R(xx))(λx.R(xx))

which further reduced yields:

R((λx.R(xx))(λx.R(xx))))

but this means that YR = R(YR), that is, the function R is evaluated using the
recursive call YR as the first argument.

Assume, for example, that we want to define a function which adds up the first n
natural numbers. We can use a recursive definition, since

∑n
i=0 i = n+

∑n−1
i=0 i. Let

us use the following definition for R:

R ≡ (λrn.Zn0(nS(r(Pn))))

This definition tells us that the number n is tested: if it is zero the result of the sum
is zero. If n is not zero, then the successor function is applied n times to the recursive
call (the argument r) of the function applied to the predecessor of n.

How do we know that r in the expression above is the recursive call to R, since
functions in λ calculus do not have names? We do not know and that is precisely
why we have to use the recursion operator Y. Assume for example that we want to
add the numbers from 0 to 3. The necessary operations are performed by the call:

YR3 = R(YR)3 = Z30(3S(YR(P3)))

Since 3 is not equal to zero, the evaluation reduces to

3S(YR2)

that is, the sum of the numbers from 0 to 3 is equal to 3 plus the sum of the numbers
from 0 to 2. Successive recursive evaluations of YR will lead to the correct final result.

Notice that in the function defined above the recursion will be broken when the
argument becomes 0. The final result will be

3S2S1S0

that is, the number 6.
8

5 Projects for the reader

1. Define the functions “less than” and “greater than” of two numerical arguments.

2. Define the positive and negative integers using pairs of natural numbers.

3. Define addition and subtraction of integers.

4. Define the division of positive integers recursively.

5. Define the function n! = n · (n− 1) · · · 1 recursively.

6. Define the rational numbers as pairs of integers.

7. Define functions for the addition, subtraction, multiplication and division of
rationals.

8. Define a data structure to represent a list of numbers.

9. Define a function which extracts the first element from a list.

10. Define a recursive function which counts the number of elements in a list.

11. Can you simulate a Turing machine using λ calculus?

References

[1] P. M, Kogge, The Architecture of Symbolic Computers, McGraw-Hill, New York,
1991, chapter 4.

[2] G. Michaelson, An Introduction to Functional Programming through Lambda Cal-
culus, Addison-Wesley, Wokingham, 1988.

[3] G. Revesz, Lambda-Calculus Combinators and Functional Programming, Cam-
bridge University Press, Cambridge, 1988, chapters 1–3.

9

